Broadband high birefringence and polarizing hollow core antiresonant fibers.

نویسندگان

  • Seyedmohammad Abokhamis Mousavi
  • Seyed Reza Sandoghchi
  • David J Richardson
  • Francesco Poletti
چکیده

We systematically study different approaches to introduce high birefringence and high polarization extinction ratio in hollow core antiresonant fibers. Having shown the ineffectiveness of elliptical cores to induce large birefringence in hollow core fibers, we focus on designing and optimizing polarization maintaining Hollow Core Nested Antiresonant Nodeless Fibers (HC-NANF). In a first approach, we create and exploit anti-crossings with glass modes at different wavelengths for the two polarizations. We show that suitable low loss high birefringence regions can be obtained by appropriately modifying the thickness of tubes along one direction while leaving the tubes in the orthogonal direction unchanged and in antiresonance. Using this concept, we propose a new birefringent NANF design providing low loss (~40dB/km) and high birefringence (>10-4) over a record bandwidth of ~550nm, and discuss how bandwidth can be traded off to further reduce the loss to a few dB/km. Finally, we propose a polarization mode-stripping technique in the birefringent NANF. As a demonstration, we propose a polarizing birefringent NANF design that can achieve orthogonal polarization loss ratios as large as 30dB over the C-band while eliminating any undesirable polarization coupling effect thereby resulting in a single polarization output in a hollow core fiber regardless of the input polarization state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cladding defects in hollow core fibers for surface mode suppression and improved birefringence.

We demonstrate a novel polarization maintaining hollow-core photonic bandgap fiber geometry that reduces the impact of surface modes on fiber transmission. The cladding structure is modified with a row of partially collapsed holes to strip away unwanted surface modes. A theoretical investigation of the surface mode stripping is presented and compared to the measured performance of four 7-cells ...

متن کامل

Composite material hollow antiresonant fibers.

We study novel designs of hollow-core antiresonant fibers comprising multiple materials in their core-boundary membrane. We show that these types of fibers still satisfy an antiresonance condition and compare their properties to those of an ideal single-material fiber with an equivalent thickness and refractive index. As a practical consequence of this concept, we discuss the first realization ...

متن کامل

Modal analysis of antiresonant hollow core fibers using S<sup>2</sup> imaging.

We analyze the higher-order core mode content in various designs of antiresonant hollow core fibers using spatially and spectrally resolved imaging. Hollow core fibers have great potential for a variety of applications, and understanding their mode content is crucial for many of these. Two different designs of hollow core fibers are considered, the first with eight nontouching rings and the sec...

متن کامل

Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers.

We use numerical simulations to investigate how the curvature of the fiber core boundary influences the attenuation of hollow antiresonant fibers. We show the importance of a "negative" curvature core boundary in reducing confinement losses and also how, for certain curvatures, optical power is coupled resonantly to cladding modes. We simulate bending losses and find results in agreement with p...

متن کامل

Polarization controller for hollow-core fiber.

We demonstrate a universal polarization controller for hollow-core fibers, a simple device consisting of three twisted fiber sections that makes use of the inherent birefringence of the air-core fiber. The device 5% bandwidth at 1550 nm is calculated from measured data to be approximately 13 nm.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 24 20  شماره 

صفحات  -

تاریخ انتشار 2016